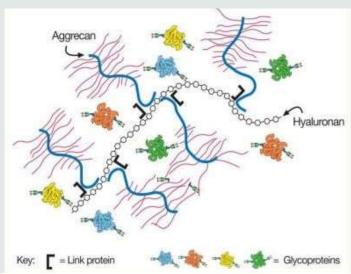
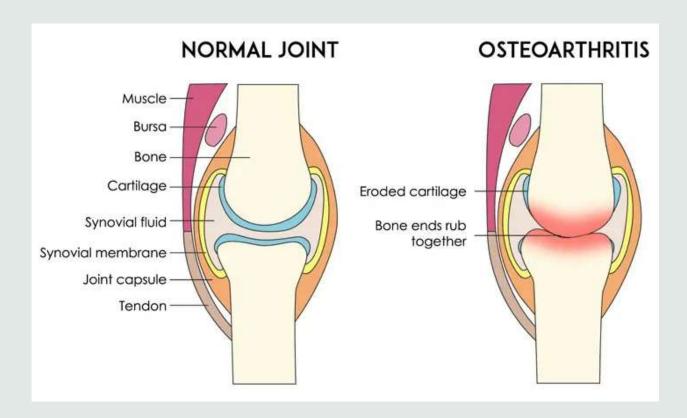


What is cartilage?

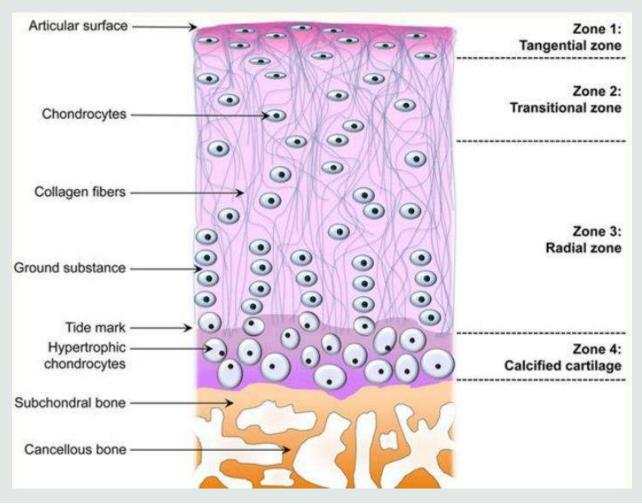
- Specialised form on connective tissue that is made up of cell and extracellular matrix
 - has chondrocytes embedded within it in a space called lucanae
- Make up of types 2,6,9,11 of collagen
- Its is weight baring

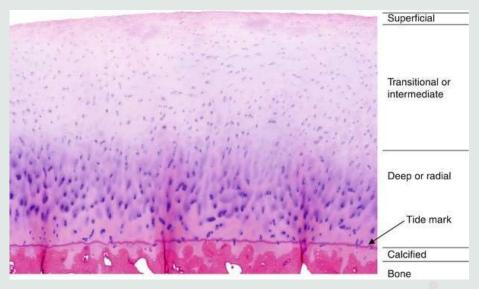

What are the different types?

- Hyaline cartilage
 - Present in synovial joints to make articular cartilage
 - Function
 - Distribute load
 - Allow movement
- Elastic cartilage
 - Present in the larynx, epiglottis and etc
- Fibrocartilage
 - Found in secondary cartilaginous joints e.g pubic symphysis
 - And in intervertebral disc, meniscus etc

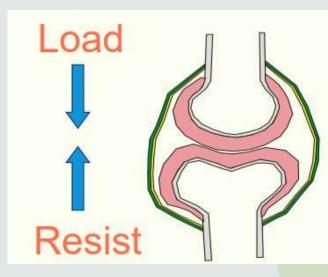


. Composition of cartilage


- Contains:
- Collagen for strength
- Elastic for flexibility
- Proteoglycan for large osmotic effect
 - Provides a large osmotic effect because it has loads of negatively charged sugar chains which pull more cations (positive charge) like Na+ and Ca2+. And where sodium goes water follows.

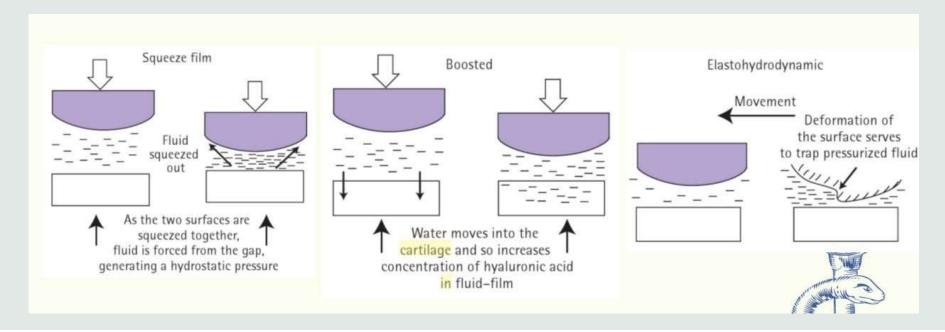


. Articular cartilage


Histology of articular cartilage

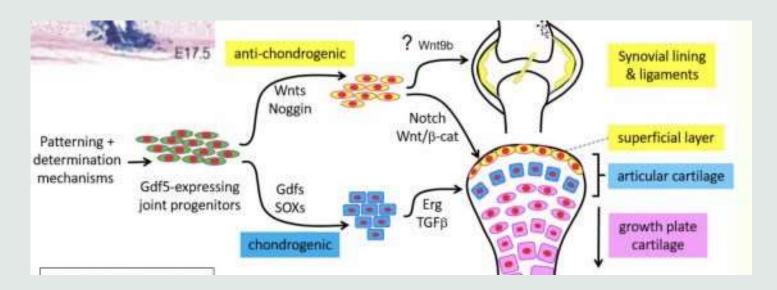
Properties of articular cartilage

- The articular cartilage is made up of hyaline cartilage
- Like we said this are a high osmotic effect
- Meaning it brings in more water -> Swelling of the cartilage
- This swelling is counteracted by resistance of the intact collagen fibers
- This provides joints to resist compressive forces while maintaining high tensile strength



What is synovial fluid

- Fluid between the bones in simple terms
- Function lubrication to reduce friction
- 3 component lubricin, phospholipids, hyaluronan
 - Hyaluronan non-sulfated GAG composed of the repeating sugars glucuronic acid and Nacetylglucosamine.
 - Phospholipids Provide hydrophobicity to the articular surface and shield asperities from solid—solid contact.
 - Lubricin proteoglycan encoded by the gene prg4 secreted by both articular cartilage and synovium


3 models of articular cartilage

- Squeeze film when 2 surface squeeze together, fluid is forces from the gaps to generate hydrostatic pressure
- Boosted water moves within the cartilage so increase the conc of hyaluronic acid in the fluid film
- Electrohydrodynamic the surface is deformed to trap the pressurised fluid

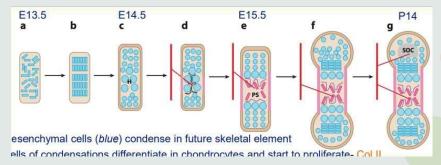
How is synovial cartilage formed

- Patterning and determination mechanism cause GDF5-expressive joint progenitors to form Wnt Noggins and GDFs SOXs
- Wnt noggin is ant chondrogenic so from the synovial components
- GDF SOXs is chondrogenic so forms the cartilage i.e growth plate and articular cartilage

2 types of ossification

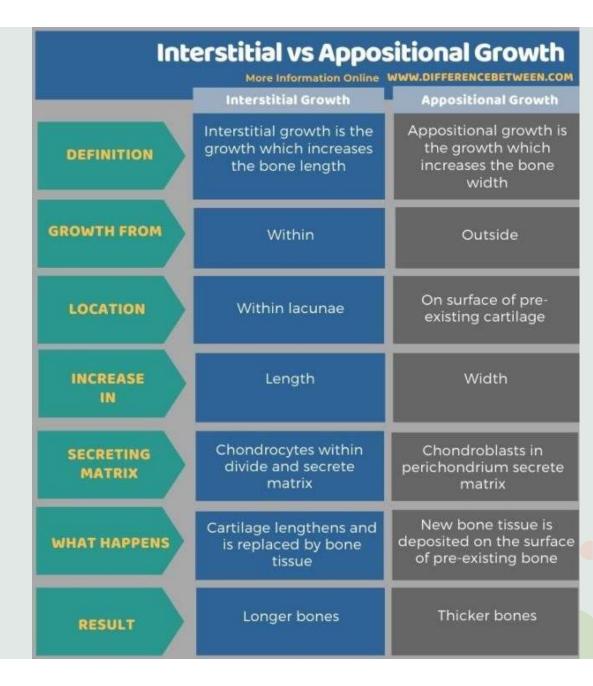
- Endochondral
 - Bone replaces existing cartilage model
- Intramembranous
 - Bone develops directly from mesenchyme or fibrous connective tissue
 - Only flat bone e.g skull, clavicle, and most of the cranial bones

ENDOCHONDRAL OSSIFICATION VERSUS


INTRAMEMBRANOUS OSSIFICATION

USSIFICATION		
	ENDOCHONDRAL OSSIFICATION	INTRAMEMBRANOUS OSSIFICATION
	A type of ossification taking place from centers arising in cartilage and involving deposition of lime salts in the cartilage matrix followed by secondary absorption and replacement by true bony tissue	Development of osseous tissue within the mesenchymal tissue without prior cartilage formation
	A cartilage is formed first and the bone is laid down on it	Bone is directly formed on a mesenchyme
	Proceeds through an intermediate cartilage	Does not form an intermediate cartilage
	Important in the formation of long bones	Important in the formation of flat bones
	Takes a longer time to form a bone	Takes less to form a bone
	Stops at year two	Sops at year 18 in females and 21 in males
		THE DEDICAL

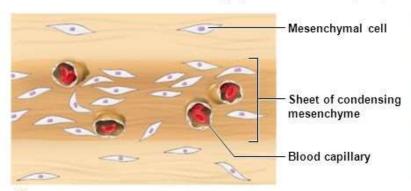
Endochondral ossification


- Mesenchymal cells condense to form chondrocytes and start to proliferate to form Collagens
 Type 1
- 2. Hypertrophic chondrocyte differentiation leads to formation of Collagen Type 10
- 3. The hypertrophic chondrocytes apoptosis favours matrix mineralisation and blood vessel invasion
- 4. Perichondral cells differentiate in osteoblasts forming the bone collar
- 5. Osteoblasts forms the primary spongiosa
- 6. Chondrocytes proliferate to lengthen the bones
- 7. The secondary ossification centres forms through vascular invasive

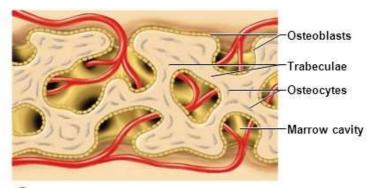
Hypertrophic chondrocytes secrete metalloproteinases -> which remodel the cartilage so the bone can invade

There are 2 types of Endochondral ossification

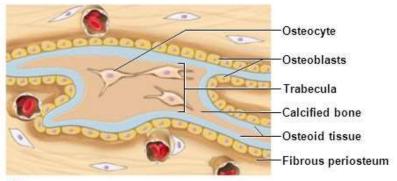
- Appositional growth When osteoblasts lay new bone tissue on the surface of old bone tissue.
- Interstitial growth Where chondrocytes embedded in the cartilage continue to produce extracellular matrix. Increasing the length of cartilage

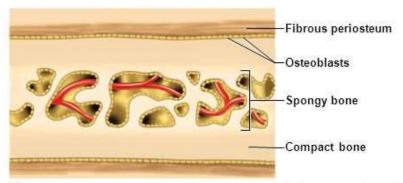


Intramembranous ossification


- 1. Mesenchymal cells differentiate into osteoblasts and group into ossification centers
- 2. Osteoblasts become entrapped by the osteoid they secrete, transforming them to osteocytes
- 3. Trabecular bone and periosteum form
- 4. Compact bone forms superficially to the trabecular bone
- 5. Blood vessels form the red marrow

Intramembranous Ossification


Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Condensation of mesenchyme into soft sheet permeated with blood capillaries

3 Honeycomb of bony trabeculae formed by continued mineral deposition; creation of spongy bone

2 Deposition of osteoid tissue by osteoblasts on mesenchymal surface; entrapment of first osteocytes; formation of periosteum

4 Surface bone filled in by bone deposition, converting spongy bone to compact bone.

Persistence of spongy bone in the middle layer.

produces flat bones of skull and clavicle

. Questions

Which type of cartilage provides a smooth surface for joint movement and is found in the articular surfaces of bones?

- a) Hyaline cartilage
- b) Fibrocartilage
- c) Elastic cartilage
- d) White fibrous cartilage

Which type of cartilage provides a smooth surface for joint movement and is found in the articular surfaces of bones?

- a) Hyaline cartilage
- b) Fibrocartilage
- c) Elastic cartilage
- d) White fibrous cartilage

- Which type of cartilage is characterized by its flexibility and is present in the external ear?
- a) Hyaline cartilage
- b) Fibrocartilage
- c) Elastic cartilage
- d) White fibrous cartilage

- Which type of cartilage is characterized by its flexibility and is present in the external ear?
- a) Hyaline cartilage
- b) Fibrocartilage
- c) Elastic cartilage
- d) White fibrous cartilage

During endochondral ossification, what is the process by which bone grows in width, adding layers to the surface?

- a) Appositional growth
- b) Interstitial growth
- c) Intramembranous growth
- d) Periosteal growth

During endochondral ossification, what is the process by which bone grows in width, adding layers to the surface?

- a) Appositional growth
- b) Interstitial growth
- c) Intramembranous growth
- d) Periosteal growth

In endochondral ossification, what is the role of blood vessels invading the calcified cartilage matrix?

- a) Inducing chondrocyte proliferation
- b) Stimulating osteoclast activity
- c) Providing nutrients for osteoblasts
- d) Initiating mineralization
- e) Facilitating hypertrophy of chondrocytes

In endochondral ossification, what is the role of blood vessels invading the calcified cartilage matrix?

- a) Inducing chondrocyte proliferation
- b) Stimulating osteoclast activity
- c) Providing nutrients for osteoblasts
- d) Initiating mineralization
- e) Facilitating hypertrophy of chondrocytes

What serves as a scaffold for intramembranous bone formation?

- a) Periosteum
- b) Perichondrium
- c) Endosteum
- d) Mesenchyme

What serves as a scaffold for intramembranous bone formation?

- a) Periosteum
- b) Perichondrium
- c) Endosteum
- d) Mesenchyme

Which of the following bones undergoes intramembranous ossification?

- a) The Parietal bone
- b) The Vertebrae
- c) The Humerus
- d) The Patella
- e) The Sternum

Which of the following bones undergoes intramembranous ossification?

a) The Parietal bone

- b) The Vertebrae
- c) The Humerus
- d) The Patella
- e) The Sternum

Which of the following is not a component of synovial fluid

- a) Protein
- b) Hyaluronan
- c) Phospholipids
- d) Lubricin

Which of the following is not a component of synovial fluid

- a) Protein
- b) Hyaluronan
- c) Phospholipids
- d) Lubricin

Which of the following is a non-sulfated GAG

- a) Heparin
- b) Lubricin
- c) Hyaluronan
- d) Phospholipids
- e) Wnt ligand

Which of the following is a non-sulfated GAG

- a) Heparin
- b) Lubricin
- c) Hyaluronan
- d) Phospholipids
- e) Wnt ligand

Which of the following statements accurately describes hypertrophic chondrocytes in the process of endochondral ossification?

- a) Hypertrophic chondrocytes secrete collagen to form the cartilaginous matrix.
- b) Hypertrophic chondrocytes actively divide to increase the number of chondroblasts.
- c) Hypertrophic chondrocytes undergo apoptosis and contribute to the formation of the primary ossification center.
- d) Hypertrophic chondrocytes primarily synthesize elastin fibers for increased elasticit

Which of the following statements accurately describes hypertrophic chondrocytes in the process of endochondral ossification?

- a) Hypertrophic chondrocytes secrete collagen to form the cartilaginous matrix.
- b) Hypertrophic chondrocytes actively divide to increase the number of chondroblasts.
- c) Hypertrophic chondrocytes undergo apoptosis and contribute to the formation of the primary ossification center.
- d) Hypertrophic chondrocytes primarily synthesize elastin fibers for increased elasticit

In the absence of hypertrophic chondrocyte activity, what might be the impact on bone development?

- a) Accelerated bone growth
- b) Impaired longitudinal bone growth
- c) Increased joint flexibility
- d) Enhanced cartilage formation

In the absence of hypertrophic chondrocyte activity, what might be the impact on bone development?

- a) Accelerated bone growth
- b) Impaired longitudinal bone growth
- c) Increased joint flexibility
- d) Enhanced cartilage formation